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Lecture 36

Oscillators, VCOs, and 

Oscillator/VCO-Derived Filters
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Only two of these circuits are useful directly as bias generators!
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Review from last lecture:



Transconductance Linearization Strategies
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Review from last lecture:



Programmable Filter Structures

It will be assumed that the transconductance gain can be programmed with 

either a dc current or a dc voltage
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Programmable First-Order Low-Pass Filter

Review from last lecture:



Voltage-controlled Filters
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Filter characteristics can be controlled by an analog voltage (VCTRL) an analog 

current (ICTRL), or a Boolean signal

Much more controllability than with a potentiometer

Useful when microntroller manages a signal path requiring filters
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Programmable Filter Structures

It will be assumed that the transconductance gain can be programmed with 

either a dc current or a dc voltage
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Programmable Filter Structures

It will be assumed that the transconductance gain can be programmed with 

either a dc current or a dc voltage
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Programmable Filter Structures
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Programmable Filter Structures
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Programmable Filter Structures

It will be assumed that the transconductance gain can be programmed with 

either a dc current or a dc voltage
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Programmable Notch Filter (Can be used as a programmable elliptic filter)
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Programmable Filter  Components

It will be assumed that the transconductance gain can be programmed with 

either a dc current or a dc voltage

gm1

gm2 ZL
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ZIN
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1
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If ZL is a capacitor serve as either positive or negative programmable inductors

Many other useful programmable filter components and filter structures possible



Question:

What is the relationship, if any, between a filter and 

an oscillator or VCO?

XOUT=?( )OCT s

XIN XOUT( )T s

XOUT
Oscillator

i.e.  Can an oscillator be 

viewed as a filter with no 

input?



What is the relationship, if any, between a filter and 

an oscillator or VCO?

XOUT
Oscillator

Will focus on modifying oscillator structures to form high frequency narrow-

band  filters

Claim:   Narrow band filters are dependent primarily on the poles close to 

the imaginary axis and affected little by poles that are farther away 

Goal:  Obtain very high frequency filter structures

XOUT=?( )OCT s



What is the relationship, if any, between a filter and 

an oscillator or VCO?

XOUT
Oscillator

• When power is applied to an oscillator, it initially behaves as a small-signal linear 

network

• When operating linearly, the oscillator has poles (but no zeros)

• Poles are ideally on the imaginary axis or appear as cc pairs in the RHP

• There is a wealth of literature on the design of oscillators

• Oscillators often are designed to operate at very high frequencies

• If cc poles of a filter are moved to RHP it will become an oscillator

•  If RHP poles of an oscillator are moved to the LHP it will become a filter if an input 

is applied

• Can oscillators be modified to become filters?

XOUT=?( )OCT s



Consider a cascaded integrator loop comprised of 

n integrators
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Oscillator Background:

XOUT=?( )OCT s

This structure is often used to build oscillators

(assume an odd number of inverting integrators)



Consider the poles of ( ) n n
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Poles are the n roots of -1 scaled by I0
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Roots of -1:

Roots are uniformly spaced on a unit circle 
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Some useful theorems

Theorem:   A rational fraction                           with simple poles can be expressed

in partial fraction form as          

where                                            for 1 ≤ j ≤ n

( )
( )

( )
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r t = A e

Theorem:   The impulse response of a rational fraction T(s) with simple poles can 

be expressed as                             where the  numbers Ai are the coefficients

in the partial fraction expansion of T(s)



Theorem:  If  pi is a simple complex pole of the rational fraction T(s), then the 

partial fraction expansion terms in the impulse response corresponding to pi and pi* 

can be expressed as *
i i

*
i i

A A

s-p s-p
+

Theorem:  If pi = αi+jβi is a simple pole with non-zero imaginary part of the rational 

fraction T(s), then the impulse response terms corresponding to the poles pi and pi* 

in the partial fraction expansion can be expressed as

where  θi is the angle of the complex quantity Ai

( )i
α t

i i iA e cos β t+θ

Observe r(t) term corresponding to any complex pole pair is real !



Theorem:  If all poles of an n-th order rational fraction T(s) are simple and have a 

non-zero Imaginary part, then the impulse response can be expressed as 

where  θi ,Ai,αi, and βi are as defined before

( )
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i i i
i
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Theorem:  If an odd-order rational fraction has one pole on the negative real axis 

at α0 and n simple poles that have a non-zero Imaginary part, then the impulse 

response can be expressed as 

where  θi ,Ai,αi, and βi are as defined before

( )
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0 i
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α t α t

0 i i i
i

A e A e cos β t+θ
=

+ 

Observe r(t) is real for both even and odd n !
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Poles of ( ) n n
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Consider the following 3-pole situation

( )i
α t

i i iA e cos β t+θ•

0.5 -0.866025404

0.5 0.866025404

-1 3.67545E-16

α=0.5 I0

β=0.866 I0

Oscillatory output at startup with any small 

impulse input             :

Starts at ω = β = 0.866I0    and will slow down as nonlinearities limit amplitude

for cc pole pair:

α=I0cos(60o)

β=I0sin(60o)

θ=60o

( )t 



Poles of ( ) n n
0D s s + I=

Consider moving all poles to left by Δα

α=0.5 I0 - Δα

β=0.866 I0
Im

Re

n=3

I0

ω0

Δα
2 2

0ω β= +

So since α is fixed , to get a high ω0, want β as large as 

possible

Consider the following 3-pole situation



Stay Safe and Stay Healthy !



End of Lecture 36



Define the location of the filter pole to be

F Fα +jβ

Consider now the filter obtained by adding a loss of αL to the integrators

It follows that

Fβ β= F Lα =α-α

Will now determine αL and I0 needed to get a desired pole Q and ω0  by moving all 

poles so that right-most pole pair is the dominant high-frequency pole pair of the  filter 

The relationship between the filter parameters

is well known

0
F

ω
α = - 

2Q
20

F

ω
β = 4Q -1

2Q

The values of α and β are dependent upon I0 but

the angle θ is only dependent upon the number of

integrators in the oscillator or VCO
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ω
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Thus for any n



( )
2 2

0ω β = −  +

Will a two-stage structure give the highest frequency of operation 

for integrators with unity gain frequency I0?

Im

Re

n=2

I0

( )
2 2

0ω β= − +

• Even though the two-stage structure may not oscillate, can work as a filter!

• Need  odd number of inversions in integrators

• Can add phase lead if necessary
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What will happen with a circuit that has two pole-pairs in the RHP?

The impulse response (for n=7) will have two decaying exponential terms 

and two growing exponential terms

( )
1

0 i

n/2
α t α t

0 i i i
i

A e A e cos β t+θ
=

+ 

Oscillator Background:

General form of response for odd number of poles: 
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What will happen with a circuit that has two pole-pairs in the RHP?

Consider the growing exponential terms and normalize to  I0=1 

( ) ( )1 2
α t α t

1 1 1 2 2 2A e cos β t+θ  + A e cos β t+θ
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At t=145 (after only 10 periods of the lower frequency signal)
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The lower frequency oscillation will completely dominate !



What will happen with a circuit that has two pole-pairs in the RHP?

Can only see the lower frequency component !

Re

Imn=8

I0

Thanks to Chen for these plots



What will happen with a circuit that has two pole-pairs in the RHP?

Consider the growing exponential terms and normalize to  I0=1 

α1=0.2225

α2=0.9009

After even only  two periods of the lower frequency waveform, it 

completely dominates !

Re

Imn=8

I0

Thanks to Chen for these plots



How do we guarantee that we have a net coefficient of +1 in D(s)?
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Must have an odd number of inversions in the loop !

If n is odd, all stages can be inverting and identical !

1

1a
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= −



How do we guarantee that we have a net coefficient of +1 in D(s)?

( ) n n
0D s s + I=

If fully differential or fully balanced, must have an odd number of 

crossings of outputs

Applicable for both even and odd order loops 
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s
0I

s
0I

s
Xout



• Add loss to delay stages

• Multiple Input Locations Often Possible

• Natural Input is Input to delay stage 

Inputs to Oscillator-Derived Filters:

XOUT=?( )OCT s

0I

s+
− 0I

s+
0I

s+
Xout

XIN

Most applicable to designing 2nd-order high frequency narrow band bandpass filters



A lossy integrator stage 

( ) m1 X

m2 X

-g /C

s+g /C
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A fully-differential voltage-controlled integrator stage 

Will need CMFB circuit

VCTRL
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Vin
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A fully-differential voltage-controlled integrator stage with loss 

( ) m1
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Will need CMFB circuit
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A fully-differential voltage-controlled integrator stage with loss 

( ) m1
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X m3
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Will need CMFB circuit
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(almost same as previous)



Example:

Using the single-stage lossy integrator, design the integrator to meet a given

ω0 and Q requirement

( )
20

0

ω
= 4Q -1

sinθ 2Q
I

( )
20 0

L

ω ω
α 4Q -1

2Q 2Q tanθ
= +

0 m1 Xg /CI =
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ωg
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C sinθ 2Q
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20 0m2

X

ω ωg
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C 2Q 2Q tanθ
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Recall:

Substituting for I0 and αL we obtain:
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Vout
XC

M1
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M2
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(1)
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OUT x m2 m1 IN

OUT m1

IN x m2

V
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sC g g V 0

V

V sC g

( )+ +

= −
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Unknowns:  IB,VEB1,W1/L1,W2/L2,CX



Example:

Using the single-stage lossy integrator, design the integrator to meet a given

ω0 and Q requirement

0 m1 Xg /CI =
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C V ω ωW W
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X
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C V ω
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C sinθ 2Q
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Expressing gm1 and gm2 in terms of design parameters:

If we assume IB=0, equating drain currents obtain:

Thus the previous two expressions can be rewritten as :

(5)

(6)

(7)

(8)

(9)



Example:

Using the single-stage lossy integrator, design the integrator to meet a given

ω0 and Q requirement

0 m1 Xg /CI =

m2 Xg /CL =
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X 1 2

C V ω ωW W
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C L L 2Q 2Q tanθ
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+
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Taking the ratio of these two equations we obtain:

Observe that the pole Q is determined by the dimensions of the lossy device !
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(9)

(10)



Example:

Using the single-stage lossy integrator, design the integrator to meet a given

ω0 and Q requirement
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Still must obtain W1/ L1, VEB1, and CX from either of these equations

Although it appears that there might be 3 degrees of freedom left and only

one constraint (one of these equations), if these integrators are connected in a 

loop, the operating point (Q-point) will be the same for all stages and will be that 

value where Vout=Vin.  So, this adds a second constraint.

Setting Vout=Vin , and assuming VT1=VT2,  we obtain from KVL 

DD EB1 EB2 TV =V +V +2V

(8)

(10)

(11)

But VEB1 and VEB2 are also related in (7)



Example:

Using the single-stage lossy integrator, design the integrator to meet a given

ω0 and Q requirement
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Still must obtain W1/ L1, VEB1, and CX from either of these equations

DD EB1 EB2 TV =V +V +2V

(8)

(10)

(11)

1 2
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2 1

W L
V =V

W L (7)

DD T
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2 1
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V -2V
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W L
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W L
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Substituting (10) into (12) and then into (8) we obtain
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Example:

Using the single-stage lossy integrator, design the integrator to meet a given

ω0 and Q requirement

Vin

Vout
XC

M1

DDV

M2
IB

2
2

2
2

W sinθ cosθ 4Q -1

L 4Q -1

+
=

There is still one degree of freedom remaining. Can either pick W1/L1 and solve for CX or pick CX and 

solve for W1/L1. 

Explicit expression for W1/L1 not available

Tradeoffs between CX and W1/L1 will often be made

Since VOUTQ=VT+VEB1, it may be preferred to pick VEB1, then solve (12) for W1/L1  and then solve (13) 

for CX

Adding IB will provide one additional degree of freedom (we arbitrarily set it to 0 in this analysis)  

and will relax the relationship between VOUTQ and W1/L1 since  (7) will be modified

(10)
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Stay Safe and Stay Healthy !
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